Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis.

نویسندگان

  • Pablo Díaz-Amarilla
  • Silvia Olivera-Bravo
  • Emiliano Trias
  • Andrea Cragnolini
  • Laura Martínez-Palma
  • Patricia Cassina
  • Joseph Beckman
  • Luis Barbeito
چکیده

Motoneuron loss and reactive astrocytosis are pathological hallmarks of amyotrophic lateral sclerosis (ALS), a paralytic neurodegenerative disease that can be triggered by mutations in Cu-Zn superoxide dismutase (SOD1). Dysfunctional astrocytes contribute to ALS pathogenesis, inducing motoneuron damage and accelerating disease progression. However, it is unknown whether ALS progression is associated with the appearance of a specific astrocytic phenotype with neurotoxic potential. Here, we report the isolation of astrocytes with aberrant phenotype (referred as "AbA cells") from primary spinal cord cultures of symptomatic rats expressing the SOD1(G93A) mutation. Isolation was based on AbA cells' marked proliferative capacity and lack of replicative senescence, which allowed oligoclonal cell expansion for 1 y. AbA cells displayed astrocytic markers including glial fibrillary acidic protein, S100β protein, glutamine synthase, and connexin 43 but lacked glutamate transporter 1 and the glial progenitor marker NG2 glycoprotein. Notably, AbA cells secreted soluble factors that induced motoneuron death with a 10-fold higher potency than neonatal SOD1(G93A) astrocytes. AbA-like aberrant astrocytes expressing S100β and connexin 43 but lacking NG2 were identified in nearby motoneurons, and their number increased sharply after disease onset. Thus, AbA cells appear to be an as-yet unknown astrocyte population arising during ALS progression with unprecedented proliferative and neurotoxic capacity and may be potential cellular targets for slowing ALS progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Mechanisms in Amyotrophic Lateral Sclerosis: The Role of Angiogenin, a Secreted RNase

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease caused by the loss of motoneurons. The precise molecular and cellular basis for neuronal death is not yet well established, but the contemporary view is that it is a culmination of multiple aberrant biological processes. Among the proposed mechanisms of motoneuron degeneration, alterations in the homeostasis of RNA binding prote...

متن کامل

Gene, cell, and axon changes in the familial amyotrophic lateral sclerosis mouse sensorimotor cortex.

Lower motoneuron abnormalities have been extensively documented in the murine model of familial amyotrophic lateral sclerosis, whereas information on corticospinal neurons in these mice is very limited. We investigated 1) mRNA levels of inflammation-related molecules in the deep layers in which corticospinal neurons reside, 2) corticospinal neurons labeled from tracer injections in the corticos...

متن کامل

CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS.

Neuroinflammation, marked by gliosis and infiltrating T cells, is a prominent pathological feature in diverse models of dominantly inherited neurodegenerative diseases. Recent evidence derived from transgenic mice ubiquitously overexpressing mutant Cu(2+)/Zn(2+) superoxide dismutase (mSOD1), a chronic neurodegenerative model of inherited amyotrophic lateral sclerosis (ALS), indicates that glia ...

متن کامل

Potential link between aberrant astrocytes and paralysis in ALS

that dysfunctional cells in the nervous system known as astrocytes induce the motor neuron damage that characterizes amyotrophic lateral sclerosis (ALS). But researchers have been unable to identify an astrocytic phenotype that becomes toxic to motor neurons. Pablo DíazAmarilla et al. (pp. 18126–18131) isolated a previously unknown type of astrocyte with aberrant phenotypic features from primar...

متن کامل

Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration.

Evidence garnered from both human autopsy studies and genetic animal models has suggested a potential role for astrocytes in the pathogenesis of amyotrophic lateral sclerosis (ALS). Currently, mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) represent the only known cause of motoneuron loss in the disease, producing 21q linked familial ALS (FALS). To determine whether astrocytic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 44  شماره 

صفحات  -

تاریخ انتشار 2011